
Chapter One 

Introduction to Electrostatics 

1.1 Introduction 

In this chapter, we begin our discussion of electromagnetics with the subject of 

electrostatic phenomena involving time independent distributions charge and fields. 

Also, we introduce concepts and definitions that are important for later discussion. 

- Maxwell equations in vacuum, fields and sources 

The equations governing electromagnetic phenomena are the Maxwell equations:  

            ……..(A1) 

 

where for external sources in vacuum, 

 

The first two equations in Eq.(A1) then become: 

 

Implicit in the Maxwell equations is the continuity equation for charge density and 

current density: 



……..(A2) 

This follows from combining the time derivative of the first equation, in Eq. (A1), 

with the divergence of the second equation. 

Also, essential for consideration of charged particle motion is the Lorentz force 

equation: 

  ……..(A3) 

which gives the force acting on a point charge (q) in the presence of electromagnetic 

fields. 

  

1.2 Coulomb's Law 

All of electrostatics stems from the quantitative statement of Coulomb's law which 

concerning the force acting between charged bodies at rest with respect to each 

other.  

The force between two small charged bodies separated by a distance large compared 

to their dimensions in air:  

(1) varied directly as the magnitude of each charge 

(2) varied inversely as the square of the distance between them 

(3) was directed along the line joining the charges 

(4) was attractive if the bodies were oppositely charged and repulsive if the bodies 

had the same type of charge. 

If F is the force on a point charge q1. located at  �̅�𝟏, due to another point charge q2, 

located at �̅�𝟐, as shown in Fig. (1.1). The Coulomb's law can be written as: 



 

Fig. (1.1) 

…… (1.1) 

where 𝑘 =
1

4𝜋𝜖𝑜
 and  𝜖𝑜 = 8.854 × 10−12 (

𝑓𝑎𝑟𝑎𝑑

𝑚𝑒𝑡𝑒𝑟
) 

 

1.3 Electric Field 

The electric field can be defined as the force per unit charge acting at a given point. 

It is a vector function of position and given as:  

�̅� = 𝑞�̅�   …… (1.2) 

where �̅� is the force, �̅� the electric field, and 𝑞 the charge. 

The electric field at the point �̅� due to a point charge q1 at the point �̅�𝟏 can be 

obtained directly: 

   …… (1.3) 

The electric field at point �̅� due to a system of point charges qi, located at �̅�𝒊, (𝒊 =

𝟏, 𝟐, 𝟑, … , 𝒏) as the vector sum: (linear superposition of forces due to many charges): 



 …… (1.4) 

The sum in Eq. (4) is replaced by an integral when the charges can be described by a 

charge density 𝜌(�̅́�): 

 …… (1.5) 

Where, 𝑑3�́� = 𝑑�́� 𝑑�́� 𝑑�́� , is a three-dimensional volume element at x'. 

 

 

and, ∆𝑞 is the charge in a small volume ∆𝑥 ∆𝑦 ∆𝑧 at the point �́� 

 

A discrete set of point charges can be described with delta functions:  

 ……(1.6) 

Eq. (1.6) represents a distribution of n point charges qi, located at the points 

 �̅�𝒊, (𝒊 = 𝟏, 𝟐, 𝟑, … , 𝒏). 

-------------------------------------------------------------------------------------------------------------------------------------------------------- 

H.W. (1) 

Using the properties of the delta function, prove Eq. (1.4). 

Hint: substitute the charge density in Eq. (1.6) into (1.5). 

-------------------------------------------------------------------------------------------------------------------------------------------------------- 



Dirac delta function 

In one dimension, the Dirac delta function written as 𝛿(𝑥 − 𝑎) , and having the 

properties: 

 

 

 

 

 

 

 

 

 



1.4 Gauss's Law 

Gauss's law is sometimes more useful and leads to a differential equation for electric 

field (E). Fig. (1.2) shows a point charge q and a closed surface S. 

Let:  r be the distance from the charge to a point on the surface, 

�̂�  be the outwardly directed unit normal to the surface at that point, 

𝑑�̅� be an element of surface area. 

 

 

 

 

 

 

 

 

 

 

If the electric field E at the point on the surface due to the charge q makes an angle 

(𝜃) with the unit normal �̂�, then the normal component of E times the area element 

𝑑�̅� is: 

 …… (1.7) 

  …… (1.8) 

 

 

Fig. (1.2) 

q outside S 
q inside S 



 

where 𝑑Ω is the element of solid angle. 

If we now integrate the normal component of E over the whole surface for a single 

point charge, the result is: 

 …… (1.9) 

For a set of charges, the normal component of E over the whole surface is: 

 …… (1.10) 

For a continuous charge density, the normal component of E over the whole surface 

is: 

…… (1.11) 

where 𝜌(𝒙) is the continuous charge density and V is the volume enclosed by S. 

 

1.5 Differential Form of Gauss's Law 

Applying the divergence theorem on Eq. (1.11), the differential form of Gauss's law is: 

 …… (1.12) 



Where the divergence theorem is defined by: 

…… (1.13) 

 

1.6 Another Equation of Electrostatics and the Scalar Potential 

A vector field can be specified almost completely if its divergence and curl are given 

everywhere in space. 

∇ × ∇Φ = 0 , 𝑓𝑜𝑟 𝑎𝑙𝑙 Φ 

--------------------------------------------------------------------------------------------------------------------------------------------------------

H.W. (2) 

Derive the equation of scalar potential:   

 …… (1.14) 

-------------------------------------------------------------------------------------------------------------------------------------------------------- 

The physical interpretation of the scalar potential can explain from Fig. (1.3). This 

figure shows transporting a test charge q from one point (A) to another point (B) in 

the presence of an electric field E(x), 

 

Fig. (1.3) 



The work done in moving the charge from A to B is (�̅� = 𝑞 �̅�): 

…… (1.15) 

In Eq. (1.15), the minus sign appears because that the work done on the charge 

against the action of the field. By using: 

�̅� = −∇Φ …… (1.16) 

The work can be written: 

…… (1.17) 

From Eq. (1.17) the term (𝑞Φ) can be interpreted as the potential energy of the test 

charge in the electrostatic field. From Eqs. (1.15) and (1. 17), we have: 

…… (1.18) 

From Eq. (1.18), it can be seen that the line integral of the electric field between two 

points is independent of the path and is the negative of the potential difference 

between the points. If the path is closed, the line integral in Eq. (1.18) becomes 

zero: 

 …… (1.19) 

With the line integral of the electric field being independent of the path and the 

application of the Stokes’s theorem on Eq.(1.19), we get: 

…… (1.20) 



The Stokes’s theorem is given by: 

 

 

 

 


